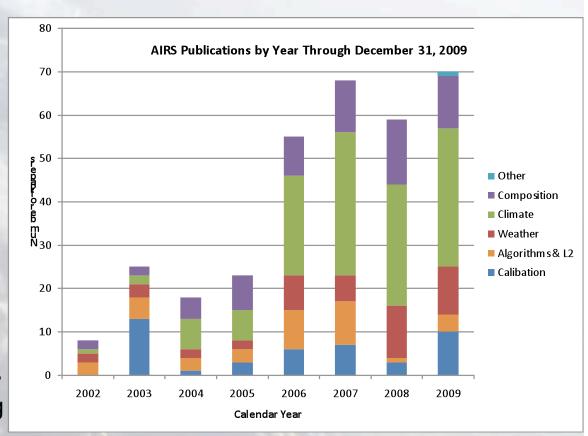


Plans for AIRS V6 Validation and Testing

Eric Fetzer and Bill Irion

Jet Propulsion Laboratory / California Institute of Technology


AIRS Science Team Meeting, Caltech 22 April 2010

Why validation still matters

- Scientific use of AIRS products is increasing.
 - Shown in many talks this week.

- Emphasis on regional climate in IPPC fifth assessment.
 - AIRS can be the standard.
 - Joao Teixeira is working toward this goal.

Validation Table

AIRS Product	Uncertainty Estimate (Version 5)	Val Status (Version 5)	Source
Radiances			
AIRS IR Radiance	<0.2%	Stage 3	Project
AIRS VIS/NIR Radiance	15-20%	Stage 1	Project
AMSU Radiance	1-3 K	Stage 3	Project
HSB Radiance	1-3 K	Stage 3	Project
Core Products			
Cloud Cleared IR Radiance	1.0 K	Stage 2	Project
Sea Surface Temperature	1.0 K	Stage 2	Project
Land Surface Temperature	2-3 K	Stage 1	Project
Temperature Profile	1 K / km	Stage 2	Project
Water Vapor Profile	15% / 2km	Stage 2	Project
Total Precipitable Water	5%	Stage 2	Project
Fractional Cloud Cover	20%	Stage 2	Project
Cloud Top Height	1 km	Stage 2	Project
Cloud Top Temperature	2.0 K	Stage 2	Project
Neccesary Products*			
Total Ozone Column	5%	Stage 2	Project
Ozone Profile	20%	Stage 2	Project
Land Surface Emissivity	10%	Stage 1	Project
IR Dust**	0.5 K	Stage 1	Project
Research Products			
Carbon Monoxide	15%	Stage 2	NOAA/UMBC
Methane	2%	Stage 1	NOAA
Carbon Dioxide**	1-2 ppm	Stage 1	NASA/NOAA
OLR	5 W/m2	Stage 1	GSFC
HNO3**	0.2 DU	Stage 1	NOAA/UMBC
Sulfur Dioxide**	1 DU	Stage 1	NOAA/UMBC

^{*}Necessary Products are required to retrieve accurate temperature profiles (1K/km) in all conditions

Validation Status Definitions (Common to all Aqua Instruments)

Stage 1: Validation Product accuracy has been estimated using a small number of independent measurements obtained from selected locations and time periods and ground-truth/field program effort.

Stage 2: Validation Product accuracy has been assessed over a widely distributed set of locations and time periods via several ground-truth and validation efforts

Stage 3: Validation Product accuracy has been assessed, and the uncertainties in the product well-established via independent measurements made in a systematic and statistically robust way that represents global conditions.

^{**}Product not yet available in AIRS Level 2 Files. Products will be available in Version 6

Validation and Testing Current assets (incomplete list)

- Operational sonde database
- Dedicated sonde database
- GPS for T_{air} < 250 K
- ECMWF profiles
- AMSR-E SST and water vapor
- OMI total ozone, ozonesondes
- CloudSat/CALIPSO
- Surface station data
- Aircraft campaigns

Radiosonde Data Base

- Atlas of dedicated radiosondes in common format.
- Add operational sondes for temperature bias trending.
 - Supplement dedicated sondes in E. Europe and Pacific where
 0,12Z = 1:30 local time.
- Why?
 - Validation: constrain AIRS accuracy and precision.
 - V6 testing
 - To supplement ECMWF comparisons.
 - Can we replicate tests as done by Thomas Hearty for V3, V4, and V5?

Dedicated sonde coverage by geophysical regime

1. Tropics are well covered

- ARM TWP, OCEAN
- Minnett sondes, OCEAN
- Nalli sondes from AEROSE, OCEAN
- Costa Rica, Aura Validation Experiments (AVE), LAND
- Puerto Rico (AVE?), MIXED
- Andros, Bahamas, OCEAN, SON
- RICO Experiment, Caribbean OCEAN, DJF
- San Cristobal, Galapagos, OCEAN, DJF
- Ascension Is., E. Trop. Atl., OCEAN, DJF
- Natal, Brazil, LAND, DJF

Green = bias only (N ~ 10), 1 Season Blue = bias, variance (N~20), 1 Season Red = bias, variance, >1 Season

Coverage by geophysical regime

2. Middle Latitudes well covered at 1 land site.

- ARM Southern Great Plain, LAND, All seasons
- Beltsville, Maryland, LAND, JJA
- Chesapeake Light Platform, OCEAN, SON
- Garmisch, Germany, LAND, SON
- Toulouse, France, LAND, SON
- Table Mountain, So. California, SON

3. Polar Regions have limited sonde coverage.

- ARM NSA, MIXED, All seasons
- Dome C, Antarctica, LAND DJF

Summarizing dedicated sonde sites

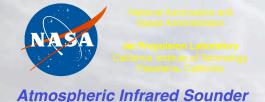
We have 30 total sites, consisting of:

- 7: 'Supersites' with >20 sondes for multiple seasons.
- 8: Good sites with >20 sondes for 1 season.
- 3: Okay sites with ~10 sondes for 1 season.
- 12: poor sites with too few sondes
 - May be useful for global bias constraints.
- Some climate conditions are poorly sampled. For example:
 - Only Table Mountain, CA is near a continental desert.
 - Few sondes over extensive tropical forests like Amazon, Congo, Indonesia.
 - Few sondes at middle and high latitude oceanic sites.
 - Dedicated sondes over Pacific may help.

Validate to five (six?) geophysical regimes

- 1. Frozen land and ocean.
- 2. Non-frozen ocean: low latitude
- 3. Non-frozen ocean: high latitude.
- 4. Non-frozen land: low latitude
- 5. Non-frozen land: temperate
- 6. Non-frozen land: desert???

Not enough sites to subdivide these classes further.


with exceptions, like SST.

V6 products to be tested

- Temperature profile
- Water vapor
- Cloud fraction, cloud-top pressure
- Total ozone
- Sea surface temperature
- Land surface emissivity
- Error bars
- Bias trends

This will be quite different from V5 testing since the bulk of the comparisons will be against measurements, not ECMWF.

Conditions for V6 Testing (Same as V5)

- Geophysical conditions:
 - Five (or six).
- Quality flag conditions:
 - Qual_* = 0 or 1
 - − retrieval_type <> 100
- Resolution for test purposes:
 - Temperature from support product levels (TAirSup)
 - average in 1 km thick layers below 700 mb
 - 2 km thick layers from 700 to 30 mb.
 - Water will be converted to 2km thick layers in troposphere.
 - Same procedure for correlative data.
 - NOTE: does not exploit averaging kernel info.

Proposed Tests

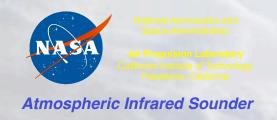
- Bias test
 - Calculate mean or median difference between AIRS and correlative data
- RMS test
 - Calculate root-mean-square of difference between AIRS and correlative data
- Chi-square test
 - Calculate weighted residual between AIRS and correlative data, e.g.:

$$\chi^2 = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{T_{AIRS} - T_{sonde}}{err_{T_{AIRS}}} \right)^2$$

- Yield test
 - Calculate yield under different geophysical conditions.
 - Test that Qual_* parameters are consistent with error estimates (e.g., the lowest error estimate for Qual_* = 1 is higher than the highest error estimate for Qual_* = 0, etc.)
 - · Compare to V5 focus days and check for changes and trends in yield
- Skill Test
 - Measure improvement with respect to background climatology.
 Skill = Corr(retrieved climatology, truth climatology) * Sqrt(fractional yield)
- Trend test
 - Well-established against radiosondes.

Specific Parameter tests

- Core product tests of Bias, RMS, Skill, Chi-Squared, Yield, Trends
 - Atmospheric temperature
 - · Correlative data: sondes, GPS
 - Surface temperature
 - Correlative data: surface data, AMSR-E
 - Water vapor
 - Correlative data: Sondes, AMSR-E (ocean total water)
 - Ozone
 - · Correlative data: OMI, ozonesondes
- Cloud Parameters
 - Correlative data: CloudSat/CALIPSO
 - The same review process as V5.
 - Use combined CloudSat/CALIPSO cloud profiles to assess the cloud detection, amount, and height products.
- Carbon Monoxide, carbon dioxide, methane?


PGE Tests

- L2 Bias Trending
 - Compare T_{air}-sonde as a function of time
- Retrieval in presence of dust
 - Compare T_{air}, H₂O retrieval to sondes in presence of dust
 - Success criteria: reduced RMS to sondes and SST.
 - Many sondes from Nick Nalli.
- L2 New Regression Tuning
 - Test Regression T_{air}, H₂OCD, T_{surf}, emis similarly to how these are tested for the final.
 - Looking for better RMS and skill than V5.
- L2 Remove bias tuning
 - Skill test.

PGE Tests (con't)

- Use Climatology as L2 First Guess
 - RMS, yield, trend and skill tests
- L2 Emissivity
- L2 Boundary Layer
 - RMS tests in boundary layer compared with sondes
- L2 CO₂ climatology (for clouds and aerosols only)
 - RMS, yield, trend and skill tests
- L2 AIRS-Only (QA and Error)
- L2 Blackwell Neural Network
 - L2 Retrieval post effects of Neural Net integration
- L2 Regression vs. Neural Net for first guess.
 - Which is better? How will it affect Joel's code?

Conclusions: Validation and Testing

- We have a very extensive assembly of correlative data sets.
- We have a very comprehensive set of tests and validation analyses.
- We need to triage these to something relevant, manageable, and achievable.
 - Role of Deputy Project Scientist (like Gary Cooper in "High Noon").
- Improvement in V6 must be/is being demonstrated.